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intraplate seismicit
magnitude longer thai iizrate§ according to a very long time scale, two to four
: available historical record. Seismotect;nic studies

orders of
ds from the formerl | -
y contiguous continental region of North West Europe can aid

d _tho
understan
and tempoxa
se jsmotecton ics.

select strong-mo
ijc ground motion in Eastern Canada.

from 400 antil 100 million years ago, East-
_ and North West Europe were the
same continent (laurasia) - the Iapetus
suture zone, marking the site of the former
Atlantic, passing from Newfoundland across
to Ireland and Scotland. A series e S 48 B, Ay
ing episodes, first between Greenland and
Canada , and subsequently between Greenland
and Europe fragmented Laurasia, and for the
past 100 million years ago the regions have
been on separate plates. Yet even while -
separated, these twoO 'passive—margin' re-
gions have many parallels in their tectonic
development, including proximity to a major
Tertiary collision zone, evidence for dis-
persed deformation passing through the re-
gion, epeirogenic uplift around the North
Atlantic, and finally the oscillatory form-
ation and disappearance of thick continental
ice~-sheets.
gen'l':i:{lboth regions have some seismicity,
e y of a low level, but capable of
ing building damage and taking lives.
ar

need .
eed to know more about the likely location

g
_E_hafuture | damaging earthquakes. 1O this
3 t.a; i:.g e#‘:hangg of information may help
 fﬁ¥i?T?an§w§rE to some of the most pressing

ding of Eastern Canadi * Eead
$ wardations in SEisizcii;Smlcgty and Seigmic sonation: including geographical
R parametricrgind'the du;atlon and configuration of contemporary
tion data from more t.u Vo ?f intraplate seismicity are required to g
active reqgions more appropriate to the signa

ture ok

2 TIMESCALES

The most important frame within which TO
view intraplate seismicity 1s het ot The
time scale. The period from one ma joxr
fault movement until its repeat has come
to be termed the 'seismic cycle'. Seismic
cycles are unlikely to be regular or region-
ally consistent from one fault tO another,
put within a given section of equally de-
forming crust the return period of major
earthquake generating fault movements, a
notional 'regional seismic cycle', probably
lies within one oxder of magnitude of time
scale. This represents the duration of
monitoring necessary to record a total pic-
ture of the pattern of coseismic crustal
deformation. Estimates of the seismic
cycle for Eastern canada must be based on
a) extrapolations from the association
between seismic cycle time duration and
seismiclity obtained for more active regions,
b) observations made directly from the

geological record of intraplate seismicC
cycles.

The seismiC cycle at plate poundaries 18
generally petween 50 and 1000 years (Nish-
enko & McCann 1981) . For areas of rapid

continental deformation, such as China OF
Usa, it probably lies in

10,000 years (e .g. See
For slowly deforming
late regions it 1is likely

continental intrap

always to be more %
ly longer than 100,000 years, and perhaps

1 ,000,000 years. Direct geological studies
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complete for larger events (p.

g00 years: and for lesser eVen;
around 400 years. Second, e
geology both onland and B8, |
mapped from surface exposure
reflection data, t? show ERe oo,
of faulting affecting sedimeny,
wide areas are younger thanp g,
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yearS.
among plate boundaries ang . .

intraplate regions it is poggyy,
a variety of different patteyn. .
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G perhaps younger + shat more Lipertant quent very large events (e, g .

e a ey
i . lz'ae ﬁrg;-‘l cle of individual faults B Sicily) .  There are regiong . . °
e micC : . h: 3 il ‘frrl.HL

than the seis y + intensity there are marked geographical eh:e.,

' ' Lghes
is the return period of hig . - o ‘ oy
shaking in a given region. In many reglons gseismicity (Iran,; China). il

|

-
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this may be an order of magnitude shorter such as Turkey where there 3r. ?__Tﬁ-:f .
than the individual fault recurrence inter- poral variations in overal] Seienm Wl
val. Such a period also has the advantage release across large areas. Al ..

of being retrievable from secondary effects erns can be seen because of an M
related to ground shaking, such as submarine historical record that is proba'ﬁ.ht e

slumps or sandboils. Recent work in the these cases at least 10% of the c.:.
coastal plains of South Carolina (Obermeir cycle. Do similar patterns e}{;h:-,z_‘: i
et al. 1985) has succeeded in identifying the more slowly deforming cont:i::;q ;
the recurrence of ground shaking from the plate reqgi ' .
mapping of hi : gions, operating over a lonme: .
g prehlistoric sand-blows, such as scale? T g

were found after the 1886 Charleston event.
That this is recording a phenﬂmerion differ-

ent from the true seismic c
: ycle is suggested : - .
by the d.:.'fferent geographical range oggthe T &l wakiations in E—ICLty

The cumulative deformation (location and

b e Y’ 4

¥ n

di SCurrence of ' 22;19 g geéological manifestation of th
“Placementsg relative] indivldual 1886 Ormation does provide a compound picte
y lc.:n.g; OF the oy of the total Sseismic cycle, in general,

episode

Aft relat i

Eeismje_z discussjion of the :Vely young, if;Ult displacements do not tend to pas:
ycle, the next qu ime frame of the rough to the Ssurface, or if so, they




s Hnm nt lies in the centre of NoTYt)
' . ||

O h.tmn Hol ‘,Lamfi and wp ¥t Oaw 1:1 1 M Lhe ®
o B M A -
g% %l’ I’OQiﬁn p 1t 18 possible to comp n
N jogical manifestation of the di?r“ (el 3
L OYrm nd

R wmcutﬁd with the total sed e

] ﬂith the seismicity obtained a;ni;

) per iods of instrumental m::liltx

m ”ﬂ f:‘m the historical record. or:

uguros { to 3, the seismicity of the Roermond!( |

» Rhine Graben is shown over three t-:k'm

W gix years micro-seismic m'{ﬂ'm“ f‘ .Lan
) (Fig. 1) can be compared with QY-

fivu hundred years historical sei. d}_

U”"” (Fig.2) , and a P-’f ojected 1(}(?,15(){')

| Dusseldor|

| . NP has been Cﬁnst rut:‘t mi fI.(JIH COn ,Jf;iur-,
1“ _of the total Quaternary fault dm—:‘

8 t (up to 80m) taken from Ahorner
tlﬁﬁ' The consistency Of displacement
| the main faults, and the fact that

proke surface at all, strongly suggest
‘these Quaternary faults wer
M e associated Figure 2: Lower Rhine Graben historical
. 3 3 A STOX iCa

earthquake-generatin .
B Suts Heen aszlizzét move- seismicity (M>4) 1500 to 1980
fault length and fault dis-
Wt scaling relationships compiled

i | "ot al. (1984), adjusted for
jnutaly 5% of the Quaternary period.

A example, the Horremer-Sprung - Erft-
m gwist-Sprung fault system running
to the west of Koln, is about 35km long
‘and the 100,000 year offset of about f-‘lmjF
scales to one magnitude 7 earthquake 1n

00,000 year
urface fault
M>7; amall

Lower Rhine Graben 1
econstructed from S

(Large squares:

Figure 33
geismicity ¥
displacement.
gquares: M>6)

not of course intan-

ded as an exact pradictian, put rather an
illustratian of the seismicity within this
area in a time plryud-&pﬁrﬂximating to the
seismic aycle aﬁ the majur faults. -

this period.
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S Yﬁ--_rate at a varlgty Oof rates ang over
- a cariety of time p?rlods. They may re-
A sent intercommunication across plates

{effec'tiwly slow plate boundaries) , Mem-

tectonics as plates change latitude

braﬂe i .
R the geoid, or differential movements
-bﬂzﬁm the plate and underlying mantle.

as the geometry of ri*.:gid pPlate motions can
never gear dire?tly with that of rising and
falling ccnvect?.on‘cel‘hls in the underlying
asthm_ﬂgphere, 11‘: 1s 1nevitable that con-
trary motions exist beneath a plate, that
minox upwellings may occur mid-plate, and
that internal deformation leads to seismi-

city- |
glow rates of deformation, with infre-

quent surface fault-scarp formation may be
hard to locate in the surface morphology

of emerged continents. It is only in re-
jions of subsidence that the record of de-
formation has a chance of being preserved,
and dated. The existence of a number of
hasins , and the slowly subsiding shelf re-
gions can be studilied across North West Eur-
ope to provide a picture of the tectonic
jdevelopment through the Tertiary.

This indicates phases of tectonic dis-
t+urbance — of intercommunication between
+he Alpine collision zone and the North
atlantic spreading ridge, which continued
from the beginning of the Eocene through
o the end of the Oligocene, and involved
about 5 to 10km N-S compression and a corr-
esponding E-W extension, across the entire
region. This deformation was concentrated
along extensional rifts such as the Rhine
Graben, and across compressional fold belts
with underlying reverse faults, as across
Southern England. The region was also
criss—crossed with NE-SW sinistral and NW-
SE dextral strike-slip systems. The areal
seismic energy release at this period may
have been eguivalent to that of China to-
day.

However this period was followed by new
phases of tectonics which can be dated from
the offshore region. Extension in the Low-
er Rhine Graben is one component of this
new tectonic episode, that has also involved
4 renewed surge of subsidence in the Central
Graben of the North Sea, and in the Moere
- Basin, off the coast of Mid-Norway, as well
@8 regional uplifts over England, North-
West Germany and Western Norway. This ep-
¢ i‘m Probably began in the Upper Pliocene
- °F Lower Quaternary (2 - 4 Ma). Continuing

—~4stal extension across the Lower Rhine
- aben has amounted to about 100m through

eof available subsided Ter-
Y basins onland in North America, de-

post-Cretaceous or even post-Triassic. This
always gives an impression that the same
tectonic environment has been operational
for the past 50 million years. However from
the evidence of the changing tectonic boun-
dary conditions of the region to the west

ind north-east, this is relatively unlike-
Y-~
| The Tertiary tectonics of Arctic Canada
}S far from being fully comprehended, as
1t represents a complex and changing zone
Oof major crustal shear and compression, that
oPerated through the Eocene and the Oligo-
cene , parallel with a similar phase of
compression tectonics across North West
Egrope. However from the Miocene in Arc-
tic Canada compressional tectonics was re-
pPlaced by extension (Miall 1984).

The regionally consistent stress fields
ACross central USA passing into Eastern
Canada suggests that seismicity is follow-

ing a broad path of compressional deform-
ation. The New Madrid earthguake that
achieved about 1m of horizontal compress-
ion along a 50km fault, if repeated across
a 1000km wide zone every two hundred years
would achieve 250m of horizontal compress-
lon in a million years, across the whole
Eastern part of the continent.

However just as in North West Europe
where the major horizontal compressive
stress 1s uniform across much of the cont-
inent, but swings by 90° in passing into
the Moere Basin offshore Mid-Norway, so
focal mechanisms from the Baffin Bay re-
gion appear to indicate a swing in the
stress regime (Stein et alf 1979) . It would
be premature to construct a tectonic model
that could explain all the deformation tak-
ing place across Eastern Canada. However
it must be recognized that the seismicity
does reflect slow alterations in the con-
figuration of the North American continent.

The major obstacle to the recognition of
intraplate tectonic deformation in Eastern
Canada is the Ice Age heritage. As dis-
cussed below, deep glacial erosion of super-
ficial formations and rapid fluctuations in
sea-level and land-uplift from ice-cap
formation and removal, all serve profound-
ly to obscure a relatively weak long term
tectonic signal beneath a strong Ice Age
noise. There is also a problem as to any
contribution to the contemporary Seismo-
tectonics from the process of rebound 1it-

salfl.

4 SEISMICITY AND POST-GLACIAL REBOUND

gver since the waning of the Laurentian

jce-sheet, the underlying crust of the re-
qion has been rising. This rate of rebound
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Sought by a number of means.

re active, and capable of generating
mkes the size of that at TemlSk?ﬁlnj

gone 4
parthd

aoxr 1arg8r 3
A third approach to broadening the data-

lves the detailed investigation
fshore geologv to unravel the
svolving tectonics? through the Tertiarv.
]mtrﬂPLate tectonics mav be relativelyhgmall
e compared with the major phases of
ljjtiﬂg that formed the Atlantic margins,
put 1t js nonetheless regionally consistent.
of fshore horizons through the Tertiary have
enerally been dated as part of well logg-
iﬁg‘ﬁﬂjﬂg hydrocarbon prospecting, and this
;nformation allows fault histories to be
mapped through the Tu?l'tiam.r and into the
Quaterﬂar.‘r"- From this 1t is possible to
find the duration and configuration of
contemporary crustal deformation.

pase inve
of the of

& SEISMIC GROUND MOTION

the dearth of earthgquake strong-motion data
recorded in the intraplate environments of
sastern Canada and North West Europe has
forced a reluctant dependence on surrogate
data from regions of higher activity such

as California and Italy. The engineering
reliance On Californian strong-motion data
intrudes into the specification of general
guidelines for design response spectra:

the American Petroleum Institute (1981)
recommends zonal effective acceleration
scaling factors for different offshore Amer-
ican coastal waters, but makes no such dis-
tinction with the response spectra. The
degree of validity of using such data for
engineering design purposes is a key issue,
but one that cannot easily be resolved with-
in the framework of strong-motion data
alone, because of the paucity of local re-
cords.

Factors which contribute to regional
ground motion variation are local crustal
geclogy, fault geometry and seismlc source
dynamics. With the obvious difference in
tectonics between Western and Eastern USA,
evidence for attributable variations in
seismic source characteristics has been
_ Kanamorli &
:ilen (1986) suggest that the average
tress drop is correlated with earthquake
i:i:at time through a dependence on slip
ate. With a factor of five difference
commonly observed between the static stress

mi E._ ©f earthquakes which occur with short
o -1’3"_19 recurrence intervals, the extreme-

¥ long repeat times of earthquakes in in-

_iﬁwhtarﬂgiﬂns such as Eastern USA are
W&d to indicate high average stress
 gs.00: Scholz et al. (1986) obtain a sim-

Lt in studying non-plate boundary

Western USA events .
Cj%tudie; of static stress drop based on
lé;;iiat;ZES of seismic moment with fault
- » adduced from surface rupture and
TEZiriZ?ck Zzone dimensions; are however
tiﬁ; thaivziidfﬁr underataﬁding ground mo-
At quéeizi'ﬁfﬁdynaml? SFress drop
with SOUKCé duratzznb GZ ?e}smlc m@m?nt
Kind involwving w%vmgéﬂ- td?lESin -
been carried %ut (;Qm;m @DQElll?g, it
C rville 1986) for a
dataéase of events from Western USA, East-
| g St ATrrica and
South Africa. 1In contrast with the static
SFreSE drop investigations, no significant
difference between interplate and intra-
plate results could be identified with the
data available. Whether or not this ob-
serxrvation survives the acquisition and an-
alysis of further data, it does spotlight
the need to examine the effects of local
crustal geology and fault geometry on
ground motion variability.
A sensitivity study aimed at discerning
these effects has been carried out using
a suite of programs written by Spudich
at USGS. A review of techniques for the
numerical modelling of extended seismicC
sources is given by Spudich and Archuleta
(1986) , which includes the main references
on the discrete wavenumber finite element
method implemented in the Spudich codes.
Whatever differences there may be in
seismic source characteristics, between one
region and another, the effects of varia-
tions in the dvnamical properties of base
rock, and of variations in depth of fault-

ing in themselves are sufficient to cause
important differences in ground motion.
Such effects are all too readily masked Dby
loose definitions of base rock: the Amer-
ican Petroleum Institute (API) quote a fi-
qure of 914 m/sec for shear wave veloclty,
which is considerably lower than the 2500
m/sec figure adopted in Japan, which corr-
esponds TO relatively hard rock layers.

Tn the low frequency range relevant for
of fshore structures, differences in base
rock and depth of faulting could lead tO
differences 1n ground motion of a factor
of several times. This demonstrates the
jmportance of site-specific seismic hazard

assessment which recognizes the patentla}
: qnificant variations in ground motion

between sites 1in the same tectonicC province.

It also establishes a principle for the
selection of foreign strong-motion data
used to construct seismic design spectra.
discriminated on the

y of base rock, and care

ds of ualit
o : ites of

should be taken with records from S
uncertain qeotechnical provenance.
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slowed down in time. Even the intraplate
zones of deformation, such as the band of
compression passing across North America,
may be little more than very slow collision
Zones. In passing from areas of high act-
lvity to continental intraplate regions,

as the seismic cycle lengthens, more and
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to lie in the geological record rather than
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